Preguntas Frecuentes de Cadenas de Markov

Una Cadena de Markov en tiempo discreto consiste en una clase particular de un proceso estocástico donde se verifica el cumplimiento de la propiedad markoviana (en términos simples establece que el futuro es independiente del pasado dado el presente) y la propiedad estacionaria (la probabilidad de transición de un estado i a un estado j al cabo de una etapa no depende de la etapa n). En este contexto a continuación presentamos 3 preguntas de selección múltiple que permite reforzar algunos conceptos básicos sobre las Cadenas de Markov.

Pregunta N°1: En la matriz de probabilidades de transición:

a) La suma de cada columna debe ser igual a 1
b) La suma de cada columna y cada fila debe ser igual a 1
c) Por lo menos debe haber un 0 en cada fila
d) La suma de cada fila debe ser igual a 1
e) Por lo menos debe haber un 0 en cada columna

Respuesta: Alternativa d). La matriz de probabilidades de transición o matriz P resume las probabilidad de transición en una etapa de un estado i a un estado j. La matriz P tiene la misma cantidad de filas y columnas. Por ejemplo a continuación de presenta la matriz de transición que corresponde a uno de los casos discutidos en el artículo Cadenas de Markov (Ejercicios Resueltos) donde se corrobora que la sumatoria de los valores de cada fila corresponde a un 100%.

matriz-marcas-markov

Pregunta N°2: Si la distribución de probabilidad de la variable X_{n} no cambia de una etapa a otra:

a) Cada probabilidad debe ser igual a 1
b) Debe haber al menos una probabilidad igual a 0
c) La probabilidad debe ser la misma para cada estado
d) Dicha distribución coincide con la distribución estacionaria
e) Debe haber al menos una probabilidad igual a 1

Respuesta: Alternativa d). En este caso estamos frente a la distribución estacionaria o de largo plazo la cual como hemos discutido previamente es independiente de la distribución inicial para la variable aleatoria. Antecedentes adicionales y un ejemplo con el detalle del cálculo se puede consultar en Distribución Límite de una Cadena de Markov en Tiempo Discreto.

ecuaciones-estacionarias-ma

Pregunta N°3: Cuál de las siguientes alternativas no es un supuesto de las cadenas de Markov:

a) Existe un número finito de estados
b) Existe un número finito de etapas
c) Las probabilidades de la variable de estado X_{n} se pueden calcular usando únicamente la matriz de probabilidades de transición
d) La distribución de probabilidades de una etapa no cambia de una etapa a la otra
e) Todas la anteriores no son supuestos del análisis

Respuesta: Alternativa e). Se descarta a) y b) debido a que puede existir un número infinito de estados y etapas. En cuanto a las probabilidades de la variable de estado X_{n}, se requiere conocer una distribución de estado actual o inicial para que luego, haciendo uso de las ecuaciones matriciales se pueda estimar las probabilidades de estado.

grafo-markov-hospital

Rating: 5.0. From 3 votes.
Please wait...

, , ,

Comments are closed.