Incorporar nueva variable en un Modelo (Análisis de Sensibilidad en Programación Lineal)

Una vez resuelto un modelo de Programación Lineal a través del Método Simplex puede resultar de interés analizar si cambia la solución óptima y valor óptimo del problema luego de incluir una nueva variable de decisión.

Por ejemplo, en un Problema de Producción esta nueva variable generalmente representa la evaluación de un nuevo producto no considerado inicialmente donde es útil saber cuál sería su impacto en los resultados del modelo sin la necesidad de reoptimizar.

Este tipo de análisis corresponde al Análisis de Sensibilidad en Programación Lineal y a continuación presentaremos un ejemplo de este escenario.

Consideremos el siguiente modelo de optimización:

Modelo de Programación Lineal

Al resolver este modelo de Programación Lineal con el Método Simplex se alcanza la siguiente tabla final, donde s1, s2 y s3 son las variables de holgura de las restricciones 1, 2 y 3, respectivamente:

Tabla Optima Metodo Simplex

Consideremos adicionalmente que las variables x e y representan 2 productos y sus respectivos coeficientes en la función objetivo representan el ingreso asociado a su venta. En este contexto, en el plan actual se producen 100 unidades de x y 350 unidades de y, con un ingreso total de $3.100 (valor óptimo).

Asumamos que nos interesa analizar si conviene la fabricación de un tercer producto (llamado z) que tiene un ingreso unitario por venta de $5 y que para su fabricación requiere de 3, 1 y 1 unidad de los recursos asociados a las restricciones R1, R2 y R3, respectivamente.

Más aún, nos interesa dar respuesta a esta interrogante sin tener que resolver desde cero este nuevo problema. Si este es nuestro objetivo podemos utilizar el Análisis Postoptimal donde en particular calcularemos el costo reducido de esta nueva variable dado sus parámetros.

Si dicho costo reducido resulta ser negativo implica que la solución óptima actual deja de serlo al considerar este cambio y por tanto se puede buscar el nuevo óptimo utilizando la solución actual como punto de partida.

La fórmula del costo reducido para la nueva variable está dada por:

nueva-variable

Donde la notación corresponde a:

notacion-nueva-variable

Aplicando las definiciones anteriores a nuestro ejemplo se obtiene lo siguiente:

calculo-nueva-variable

Notar que el costo reducido para esta nueva variable es 3/2>=0 lo que significa que la solución óptima actual se mantiene si se incluye esta nueva variable al modelo (donde la variable z sería una variable no básica con valor cero).

¿Cuánto debería ser como mínimo el ingreso asociado a la nueva variable z de modo que si sea conveniente su producción y por tanto cambie la solución óptima actual?.

Responder esta interrogante consiste en determinar cuál debiera ser el valor de Cj para que Rj<0 y entonces la variable z al tener costo reducido negativo entra a la base y se continua con las iteraciones.

Por simple inspección y evaluando en la fórmula anterior se puede corroborar que el ingreso mínimo para dicha variable debería ser un valor mayor a 13/2. Por ejemplo, asumamos ahora que el ingreso unitario de la variable z es $7. El nuevo costo reducido sería -1/2 y se actualiza la tabla final del Método Simplex quedando de la siguiente forma:

simplex-nueva-variable

Se pueden continuar con las iteraciones del Método Simplex incorporando la variable z a la base y luego calculando el mínimo cuociente entre {400/2; 350/1}=200 ==> s1 deja la base. Al actualizar la tabla se obtiene la nueva solución básica factible óptima y valor óptimo:

cambio-de-variable-tabla-fi

Ahora x=200, y=150, z=200, con valor óptimo V(P)=3.200. Puedes corroborar los resultados revisando nuestro tutorial Cómo resolver un modelo de Programación Lineal con el Método Simplex.

Rating: 5.0. From 1 vote.
Please wait...

, , , , ,

Sin Comentarios aun. Se el primero en comentar!

Deja un comentario