Ejemplo de una Regresión Lineal Múltiple para un Pronóstico con Excel y Minitab

Los métodos de pronósticos de relaciones causales establecen que el comportamiento o variación de una variable de interés se puede explicar a través de una o más variables que se presume tienen un efecto significativo sobre ella. Tal sería el caso de si por ejemplo se intenta explicar las ventas de casas en un país a través de variables como la tasa de interés promedio para créditos hipotecarios, PIB per cápita, subsidios del estado para adquisición de nuevas viviendas, crecimiento demográfico, entre otras.

Ejemplo de una Regresión Lineal Múltiple

En el siguiente artículo desarrollaremos un pronóstico a través de una regresión lineal múltiple que en términos generales se puede representar por Y=\beta_{0}+\beta_{1}X_{1}+\beta_{2}X_{2}+\cdots +\beta_{k}X_{k} donde Y es la variable dependiente, X_{1},X_{2},\cdots ,X_{k} las variables independientes y \beta _{0},\beta _{1},\beta _{2},\cdots,\beta _{k} los coeficientes de la regresión. En particular consideraremos en el siguiente ejemplo una variable dependiente (Ganancias en Millones de $) y 2 variables explicativas o independientes (Número de Vendedores y Precio del Producto $), es decir, Y=\beta _{0}+\beta _{1}X_{1}+\beta _{2}X_{2}, donde X_{1} es el N° de Vendedores y X_{2} el Precio del Producto ($). La información se resume en la tabla a continuación:

datos-regresion-lineal-mult

En el artículo Cómo utilizar una Regresión Lineal para realizar un Pronóstico de Demanda se detalla el procedimiento para obtener una regresión lineal simple con una variable explicativa, lo cual se favorece con la utilización de las herramientas que provee Excel como se muestra en los siguientes gráficos:

graficos-regresion-lineal-s

¿Qué sucede si ahora buscamos explicar las Ganancias en Millones de $ a través del Número de Vendedores y Precio del Producto $? (ambas variables independientes o explicativas en forma simultanea). Existen varias alternativas para lograr lo anterior. Un procedimiento sencillo es utilizar la herramienta de Análisis de Datos de Excel cuya implementación se muestra a continuación:

estadisticas-regresion-mult

Otra alternativa es hacer uso del software estadístico Minitab 17. El siguiente tutorial muestra la implementación computacional:

salida-regresion-multiple-m

La diferencia en los coeficientes de la regresión de ambos procedimientos obedece sólo a aspectos de visualización de los resultados. Luego, la interpretación es la siguiente: las variables independientes Número de Vendedores y Precio del Producto $ explican el 97,23% de la variación de las Ganancias en Millones de $. Notar que al considerar 2 variables independientes el coeficiente de determinación r cuadrado aumenta en comparación a las alternativas que consideran sólo una variable independiente o explicativa.

¿Quieres tener el archivo Excel con la Regresión Lineal Múltiple desarrollada en este ejemplo?

Rating: 5.0. From 2 votes.
Please wait...

, , , , , ,

Sin Comentarios aun. Se el primero en comentar!

Deja un comentario