Cálculo del Nivel de Servicio Instock utilizando una Demanda con Distribución Exponencial

Ejemplo Cálculo del Nivel de Servicio Instock: Un vendedor de flores tiene que decidir todas las noches cuántas flores va a llevar de su plantación a su local comercial para vender al día siguiente. La demanda por flores es estocástica y por experiencia estima que sigue una distribución exponencial con parámetro λ=0,015. El costo por flor para el vendedor es de $6 y las flores no vendidas son consignadas a $2 a un vendedor de flores secas (esto último se considera un valor de rescate o salvage value). Además se estima que el costo por cliente perdido es de $11.

En base a los antecedentes anteriores la cantidad óptima de pedido que sugiere el Modelo Newsvendor está dada por:

calculo-pedido-newsvendor

El nivel de servicio Instock asociado a un pedido de 54 unidades es:

instock-vendedor-de-flores

Que como se aprecia corresponde a la integral definida entre 0 y 54 unidades de la función de densidad de probabilidad exponencial con  parámetro λ=0,015. El resultado anterior se puede corroborar haciendo uso del software Geogebra:

instock-geogebra

De forma análoga, simplemente basta evaluar el tamaño del pedido de 54 unidades en la función de distribución exponencial para evitar el cálculo de la integral definida presentada anteriormente. En efecto:

instock-funcion-distribucio

El siguiente diagrama obtenido con el complemento StatAssist (parte de Easyfit) da cuenta de lo anterior, donde se modela una distribución exponencial (acumulada o F) con parámetro λ=0,015 y donde para un valor de x de 54 unidades F(x) es aproximadamente un 55,51%. (se puede corroborar con la fórmula de Excel =ExpCdf(54;0,015)).

statassist-exponencial

Relación entre la Desviación Absoluta Media (MAD) y la Desviación Estándar del Error (σ)

El concepto de error en una proyección de demanda tiene que ver con la diferencia entre el valor real (observado) y el valor pronosticado. Esto da origen a errores de sobre estimación o sub estimación de la demanda real cuando dichos errores son negativos o positivos, respectivamente. En este contexto cuando los errores que ocurren en el pronóstico de demanda tienen una distribución normal (el caso más común) la Desviación Absoluta Media (MAD) se relaciona con la Desviación Estándar del Error (σ) de la siguiente forma:

relacion-mad-y-desviacion-e

Para ilustrar sobre esta relación consideremos el ejemplo utilizado en el artículo donde calculamos el Error Porcentual Absoluto Medio (MAPE) cuyos pronósticos Ft se obtienen al ajustar una Regresión Lineal a los datos reales de la demanda.

tabla-mape-mad-y-ts

Notar que el MAD calculado a Diciembre es de 36,1[u]. Luego para corroborar el cumplimiento de la relación aproximada entre el MAD y σ se requiere verificar si los errores del pronóstico se distribuyen normal. Para esta evaluación utilizaremos el software Easyfit y su herramienta de ajuste de distribuciones. Es importante en este punto destacar que es deseable contar con más datos para realizar el ajuste, no obstante, nos interesa mostrar el procedimiento.

ajustar-distribucion-normal

El programa nos entrega el siguiente histograma donde la curva de color rojo representa el comportamiento de una distribución normal (teórica). Adicionalmente en las estadísticas descriptivas se puede obtener que el error medio (considerando la naturaleza del signo del error) es -0,0833 (aproximado) lo cual constituye un elemento a favor de la relación que deseamos verificar.

ajuste-distribucion-normal-

Si volvemos a los resultados que da origen la planilla Excel podemos calcular la Desviación Estándar del Error σ (celda color naranjo) que es 45,50[u] a través de la fórmula =DESVEST(J3:J14).

calculo-desviacion-estandar

Con estos resultados corroboramos si efectivamente 1 MAD es equivalente (aproximadamente) a 0,8 desviaciones estándar del error. La conclusión es que para los datos de este ejemplo dicha relación es efectiva (por cierto aproximada) por lo cual luego de verificar que los errores del pronóstico se distribuyen normal (razonablemente) bastaría con calcular el MAD para poder generar una estimación razonable de la desviación estándar del error (o viceversa).

mad-y-sigma

Cómo ajustar una Función de Probabilidad Teórica a una serie de datos Empíricos

En el análisis del comportamiento de una línea de espera se suele considerar  la premisa de que el tiempo entre llegada de los clientes se distribuye exponencial con parámetro lambda (λ). Si bien esta presunción es válida en muchas situaciones es conveniente realizar un diagnóstico de dicha situación a través de test estadísticos ad hoc. En este contexto el siguiente artículo aborda el problema de ajuste de una función de probabilidad teórica a una serie de datos empíricos que como se menciono anteriormente es un asunto de interés en el análisis de los sistemas de espera como así también en un sin número de aplicaciones estadísticas clásicas.

La data que utilizaremos en este tutorial fue obtenida del Libro Matching Supply with Demand: An Introduction to Operations Management. Esta corresponde a las 686 llamadas que ha recibido un Call Center en un período de 4 horas según se muestra a continuación:

tabla-data-call-center

La pregunta que queremos responder es: ¿El tiempo entre llamada de los clientes se distribuye exponencial?. Análogamente ¿Qué función de probabilidad teórica ajusta de mejor forma los datos empíricos?. Para enfrentar dichas interrogantes utilizaremos el software Easyfit que hemos abordado en artículos anteriores para la confección de histogramas y análisis de estadísticas descriptivas.

Preliminarmente ordenaremos los datos recolectados en una columna y procedemos a calcular el tiempo transcurrido entre cada llamada (Iai), por ejemplo, entre la primera y segunda llamada pasan 23 segundos, entre la segunda y tercera llamada pasan 1 minuto y 24 segundos (equivalente a 84 segundos) y así sucesivamente. A continuación se muestra un extracto de dicho procedimiento:

calculo-del-tiempo-entre-ll

Con los tiempos entre llamadas en segundos (o su equivalencia en minutos si así se desea) se hace uso de Easyfit. Copiamos dichos tiempos en la columna A tal se muestra en la siguiente imagen y luego la opción «Ajustar distribuciones»:

ajustar-distribuciones-easy

Luego seleccionamos «OK»:

datos-de-entrada-easyfit

El programa se ejecuta y proporciona los resultados de los ajustes de los datos empíricos a un importante número de distribuciones teóricas, proporcionando una estimación de los parámetros respectivos.

ajuste-easyfit-datos-empiri

La distribución Wakeby es la que muestra el mejor ajuste, considerando los siguientes parámetros:

parametros-wakeby

Adicionalmente podemos obtener los test de bondad de ajuste (en la pestaña «Bondad de ajuste»). Probablemente el más conocido de ellos es el test Chi-cuadrado (notar que las distribuciones han sido ordenadas en base a este criterio). También se puede obtener el detalle de las pruebas de hipótesis para distintos niveles de significancia estadística (valores de alfa).

bondad-de-ajuste-easyfit
valores-p-easyfit

Una interpretación exhaustiva de los test de bondad de ajuste requiere de una discusión más detallada que escapa a los propósitos de este artículo. No obstante queda de manifiesto que existen herramientas computacionales que permite simplificar este tipo de análisis que es recurrente en el ámbito de la estadística y por cierto en el de la gestión de operaciones.

Intervalo de Confianza para un Pronóstico de Demanda

En el siguiente artículo abordaremos cómo calcular un Intervalo de Confianza para un Pronóstico de Demanda, lo cual permite incorporar de forma explícita el impacto que tiene la incertidumbre en la planificación de las actividades comerciales y operacionales de una empresa.

Para ello utilizaremos el Método de Alisado Exponencial o Suavizamiento Exponencial el cual hemos descrito previamente en nuestro sitio. (Ver también: Suavizamiento Exponencial Doble Ejercicios Resueltos).

Consideremos una serie histórica con la demanda de un producto para un periodo de 12 semanas. Se requiere desarrollar un intervalo de confianza del 95% para el Pronóstico de Demanda de la semana 13 utilizando el Método de Suavizamiento Exponencial Simple con α=0,3.

Para ello adoptaremos el supuesto que los errores del pronóstico se distribuyen normalmente lo cual es algo que por supuesto se puede verificar con una dedicación mayor de trabajo y para lo cual se puede utilizar un software de análisis estadístico como Easyfit.

En este contexto la tabla a continuación se muestra el pronóstico comenzando a contar de la semana 4 (esta es una decisión arbitraria dado que podría haber comenzado antes).

Notar que el primer pronóstico corresponde simplemente a la Media Móvil Simple de las primeras 3 semanas.

Luego el pronóstico de la semana 5 se obtiene de la aplicación de la siguiente fórmula: F5=F4+α(A4-F4) que al reemplazar se obtiene F5=1.775+0,3*(1.860-1.775)=1.800,5~1.801 (hemos aproximado éste y los otros pronósticos al entero más cercano según se puede apreciar en la fórmula de Excel utilizada):

intervalo-de-confianza-pron

Ahora necesitamos calcular la desviación estándar del error del pronóstico la cual se obtiene simplemente evaluando en los datos de la tabla anterior según se muestra a continuación:

desviacion-estandar-error-c

Finalmente el intervalo de confianza de un 95% para el pronóstico de la semana 13 se obtiene: (notar que F13=1.766+0,3*(1.780-1.766)=1.770,2~1.770)

intervalo-confianza-95-porc

El resultado anterior es consistente con el proporcionado por la herramienta de Cálculos de Probabilidad de Geogebra donde para una distribución de probabilidad normal (recordar el supuesto de normalidad del error adoptado anteriormente) con media μ=1.770 (F13) y desviación estándar SF=71, el área achurada en color azul representa los valores contenidos en el intervalo de confianza de un 95% (% del área bajo la curva achurada).

intervalo-de-confianza-geog

Cómo calcular el Instock y Fill Rate asociado a un Inventario

En la Gestión de Inventarios resulta como regla general tomar decisiones en un contexto de incertidumbre en el cual no se conoce por anticipado el valor o realización de la variable aleatoria que representa la demanda de un producto.

En este aspecto es importante detenerse un momento dado que según nuestra experiencia docente suele ser una fuente de confusión de los alumnos. Se puede asumir que en base a información histórica se puede construir una demanda empírica que represente razonablemente el comportamiento de la demanda de un producto o incluso buscar su representación a través de una función de probabilidad conocida o demanda teórica (por ejemplo distribución normal, distribución uniforme, distribución gamma y otras utilizadas frecuentemente para fines académicos) para la cual se deberá estimar los mejores valores de los parámetros respectivos (por ejemplo en el caso de seleccionar una distribución normal se deberá estimar los valores de la media µ y la desviación estándar σ).

Para este propósito se puede hacer uso de software estadístico como Easyfit. No obstante, independiente si trabajamos con una distribución empírica o distribución teórica que modele el comportamiento de la demanda, conocer con anticipación el valor que tomará ésta no es posible dado que esto corresponde a la realización de una variable aleatoria.

En el contexto anterior resulta necesario disponer de indicadores de gestión que permitan evaluar el desempeño de una política de mantenimiento de inventario que ayude a los tomadores de decisiones a tomar acciones correctivas de ser necesario.

Para ello presentaremos 2 indicadores frecuentemente utilizados en la actualidad, en particular en la industria de la venta al detalle o comercio minorista, conocida comúnmente como Retail.

Instock: Considerando una demanda aleatoria, y dado una cantidad de inventario Q decimos que su probabilidad de Instock es P[D<=Q].

Fill Rate: Es un indicador de servicio que representa el porcentaje de la demanda que se logra satisfacer. En fórmula:

formula-fill-rate-esperado

Ejemplo Instock y Fill Rate

La panadería Bredi es conocida por producir el mejor pan fresco de la ciudad, por eso tiene ventas sustancialmente altas. Los siguientes datos fueron recolectados durante el último año y para cada valor de k en la segunda columna se indican que porcentaje de días del año pasado la demanda fue exactamente k (baguettes):

tabla-distribucion-empirica

En base a la demanda esperada, el gerente de la panadería Bredi decide hornear 475 baguettes cada mañana (Q=475). ¿Cuál es el Instock y Fill Rate asociado a este tamaño de lote de producción?. (Es importante verificar que la suma de las probabilidades (días en que la demanda fue exactamente k unidades de producto) es un 100%).

Instock: P[D<=475]=25%+15%+10%+10%=60%, es decir, la probabilidad de que en un día cualquiera se puede satisfacer la demanda de forma íntegra es un 60%. Por ejemplo, si la demanda de un día es de 500 baguettes dado un tamaño de producción de 475 unidades se incurre en un quiebre de stock.

Fill Rate: Las ventas esperadas depende del tamaño de lote de producción (Q). Por ejemplo, si la realización de la variable aleatoria (demanda) resulta ser igual o superior a 475 baguettes, se venderán sólo lo que se produce (Q=475) y el remanente se considera como venta perdida.

fill-rate-demanda-empirica

En cuanto a la demanda esperada, ésta es independiente de Q por tanto corresponde simplemente a ponderar los distintos valores de k por la probabilidad de ocurrencia del escenario respectivo. En consecuencia en el ejemplo:

resultado-fill-rate

Lo anterior permite corroborar un resultado que se puede generalizar: Instock <= Fill Rate

Conclusiones: Naturalmente al aumentar el tamaño de Q se incrementa tanto el Instock como el Fill Rate, no obstante, esta decisión no necesariamente es la recomendable dado que aumenta la probabilidad de quedar con stock al final del día (el cual en el ejemplo podría no tener uso alternativo en caso que se decida botar el pan que sobre o podría venderse como pan frío al día siguiente obteniendo usualmente una fracción del costo de fabricación).

Este tipo de escenarios es al que usualmente los tomadores de decisiones se ven enfrentado en problemas de ciclo de vida corto (Modelo Newsvendor) ante lo cual se necesita disponer de estimaciones adicionales.