Cómo descargar e instalar Premium Solver en Excel 2010

Solver es sin duda junto a What’sBest! la herramienta más popular para resolver modelos de optimización utilizando Microsoft Excel como plataforma. En efecto la versión gratuita que utilizamos de Solver es desarrollada por Frontline Systems Inc, empresa que ofrece un importante número de herramientas y motores de resolución que son de gran utilidad para enfrentar problemas de naturaleza real aplicados en la industria.

En el siguiente artículo nos referiremos a cómo descargar e instalar la versión de prueba de Premium Solver que está disponible en forma gratuita por un período de 15 días y la cual nos permite enfrentar la resolución de modelos de Investigación Operativa significativamente mayores tanto en el número de variables de decisión como restricciones, que aquellos posibles de abordar con la versión tradicional de Solver.

Adicionalmente, al contar con algoritmos de resolución mejorados se favorece la confiabilidad de las soluciones encontradas y los tiempos de procesamiento.

A continuación presentamos el procedimiento detallado para descargar e instalar la versión de prueba de Premium Solver en un computador con Excel versión 2010.

Paso 1: Ingresar a Frontline Systems Inc, completando la información requerida en el formulario de suscripción.

registro-solver-premium

Paso 2: Descargar la versión de prueba compatible con la versión de Excel que dispongamos. En este tutorial se muestra la instalación de la versión de 64 bits. Una vez que estamos seguros de nuestra elección seleccionamos «Download Now».

descargar-premium-solver

Si tienes Excel 2010 y deseas saber de cuántos bits es la versión que utilizas ejecuta Excel y en el menú Archivo selecciona la opción Ayuda. En la esquina inferior derecha se mostrará la cantidad de bits de tu versión bajo el titulo «Acerca de Microsoft Excel».

excel-2010-64-bits

Paso 3: Revisa tu cuenta de correo electrónico (la que proporcionaste en el formulario de suscripción del Paso 1) y anota las 2 contraseñas que te han sido asignadas (en la imagen a continuación éstas han sido protegidas con color azul y rojo).

correo-con-password-premium

Paso 4: Una vez completada la descarga ejecuta el archivo «SolverSetup64.exe» (o el nombre que corresponda según la versión de Excel que estés utilizando).

solversetup64

A continuación se desplegará el asistente para la instalación del programa. (Seleccionar «Next»).

solver-installshield

Ahora debemos ingresar los password que hemos recibido por correo electrónico (Paso 3) para continuar con la activación del programa:

password-activation-solver

Luego debemos aceptar los acuerdos de la licencia del programa y seleccionar «Next».

acuerdo-licencia-solver

En estos momentos la licencia del programa ya ha sido activada y continuamos el proceso de la instalación seleccionando «OK».

activacion-solver-premium

Se debe seleccionar la carpeta donde se instalará el programa y podemos en este punto seleccionar simplemente aquella ubicación que  el programa selecciona por defecto.

carpeta-destino-solver

Es el momento de seleccionar el producto que deseamos activar. En este caso hemos seleccionado «Premium Solver Pro» que corresponde a la versión mejorada de la versión de Solver que se utiliza generalmente para fines académicos.

seleccion-premium-solver-pr

El asistente de instalación nos solicitará confirmar la instalación que hemos seleccionado («Install»).

listo-para-instalar-solver

Finalmente hemos completado la instalación del programa Premium Solver Pro y ya estamos en condiciones de poder utilizarlo para resolver modelos de optimización utilizando Microsoft Excel como plataforma.

instalacion-completa-solver

Cómo lograr un buen desempeño en un curso de Investigación de Operaciones

¿Cómo lograr un buen desempeño en un curso de Investigación de Operaciones?. Esta es una pregunta que usualmente recibimos de nuestros usuarios y probablemente te represente. En el Equipo de Gestión de Operaciones estamos convencidos que esto depende de varios factores y en este artículo te compartiremos nuestra visión al respecto.

1. Participa activamente en la sala de clases: Te recomendamos ser un ente activo del proceso de enseñanza. Si tienes dudas de las materias que el docente este explicando no dejes de preguntar. De seguro tu profesor no tendrá problemas en explicar nuevamente algo que no haya quedado suficientemente claro.

estudiante preguntando

2. Apoya tus estudios con un libro guía: Disponer de un texto guía es una gran ayuda cuando se requiere profundizar en un aspecto teórico de las materias y adicionalmente para revisar casos y ejercicios resueltos. Si cursas un curso introductorio de Investigación de Operaciones te recomendamos conseguir un libro que cubra las principales temáticas del área como la Programación Lineal, Programación Entera, Programación No Lineal y Cadenas de Markov. En nuestra experiencia docente te recomendamos los siguientes textos que los puedes adquirir a precios económicos: Investigacion de Operaciones – Hillier y Lieberman y Investigación de Operaciones, Taha 7° Edición.

3. Explota el potencial de Excel: El tamaño (cantidad de variables de decisión y restricciones) de los modelos de optimización que te sean asignados en clases son generalmente para un fin académico y por tanto no deberías tener inconvenientes en poder implementarlo en Solver o What’sBest!. En nuestro Blog podrás encontrar una serie de artículos que hemos dedicado a estas poderosas herramientas de resolución.

excel_logo

4. Descarga el Libro de Apuntes de Programación Lineal: Nuestro objetivo es ser un apoyo para tus estudios formales de Gestión e Investigación de Operaciones y en este contexto hemos desarrollado un libro de apuntes de programación lineal el cual podrás descargar de forma gratuita si nos recomiendas en las redes sociales.

ecover pl formulario

ecover pl formulario

5. Accede a Recursos Gratuitos para la Investigación de Operaciones: Te recomendamos leer nuestro artículo 7 Recursos Gratuitos para el estudiante de Investigación de Operaciones donde podrás encontrar datos útiles para tus estudios.

Esperamos que estos consejos te ayuden a lograr el objetivo de aprender y en consecuencia aprobar las materias de Investigación de Operaciones.

Método del Gradiente o Método del Descenso más Pronunciado

Para la optimización de modelos de Programación No Lineal sin restricciones se dispone de una categoría de métodos denominados «Algoritmos Generales de Descenso» entre los cuales se destaca el Método del Gradiente o Método del Descenso más Pronunciado (conocido adicionalmente como Método de Cauchy) que reducen el cálculo de un mínimo local a una secuencia de problemas de búsqueda lineal (o búsqueda unidimensional).

Consideremos el siguiente problema de Programación No Lineal no restringido:

metodo-gradiente

Es importante observar lo siguiente: El punto de partida para comenzar las iteraciones es arbitrario y al ser evaluado en la función objetivo se alcanza un valor de V(8,7)=-149.

Si evaluamos la coordenada que se alcanza al realizar una iteración del método la función objetivo obtiene el siguiente valor V(12,5)=-169 que como se puede apreciar reduce el valor de la función objetivo.

En resumen el Método del Gradiente consta de 2 pasos principales:

Primero: El cálculo de una dirección de descenso que esta dado por el negativo del gradiente de la función objetivo evaluado en el punto de partida o en el de la k-ésima iteración. En el ejemplo dicha dirección desde la coordenada original x°=(8,7) esta dada en la dirección del vector d°=(8,-4).

Segundo: Obtener la magnitud del paso α (alfa) que determina cuánto se avanza en una determinada dirección de descenso. Esto se logra generando una función unidimensional en términos de este parámetro (respecto a la función objetivo original). En el ejemplo dicha magnitud del paso es α=1/2.

Finalmente se actualiza la coordenada según lo descrito previamente alcanzando (x1,x2)=(12,5) que como se corroboró otorga un valor en la función objetivo menor al punto de partida (arbitrario).

¿Cómo determinar si se ha alcanzado la solución óptima del problema no restringido a través del Método del Gradiente?

Para ello se debe verificar que la dirección de descenso en la k-ésima iteración es nula (cero).

Se puede corroborar en este ejemplo que esto se logra al intentar realizar una nueva iteración a partir de (x1,x2)=(12,5).

Adicionalmente se generan las condiciones de segundo orden calculando la Matriz Hessiana o de segundas derivadas de la función objetivo:

seg-orden-grad

Donde los determinantes son estrictamente mayores a cero: D1=2>0 y D2=4>0 (la Matriz Hessiana por tanto es Positiva Definida) por lo cual la función objetivo es estrictamente convexa y dada la condición anterior es suficiente para garantizar que (x1,x2)=(12,5) es la solución óptima del problema.

7 Recursos Gratuitos para el estudiante de Investigación de Operaciones

En Internet existen recursos gratuitos valiosos para los estudiantes de los cursos de Investigación de Operaciones (conocido también como Investigación Operativa) que son de gran ayuda para complementar los conceptos tratados en el aula y la bibliografía. En el siguiente artículo ponemos en disposición de nuestros lectores algunos recursos que recomendamos:

1. Solver: Es sin duda la principal herramienta para resolver modelos de optimización de tamaño reducido utilizado por los alumnos de cursos de ingeniería. Este complemento de Excel se puede descargar desde el sitio web de Frontline en su versión comercial (Premium Solver Pro) para implementar modelos de mayor tamaño.

premium-solver-interfaz

2. What’sBest!: Es la alternativa a Solver dado que funciona integrada en una planilla de cálculo (Excel). La interfaz es intuitiva y seguramente quién domine Solver no demorará mucho en aprender los elementos básicos de este programa. What’sBest! ha sido desarrollado por la empresa de software Lindo.

variables-whatbest

3. AMPL: Es un lenguaje de programación matemática que permite abordar la formulación y resolución de modelos de optimización de programación lineal, programación entera y programación no lineal (entre otros). Esta plataforma es popular para modelos de mayor complejidad que requieren para su resolución de algoritmos especializados.

solucion-ampl-problema-no-l

4. GAMS: Es una herramienta de formulación matemática alternativa a AMPL que permite formular y resolver modelos de optimización de complejidad mayor.

5. NEOS Solvers: Es un portal que consolida una gran variedad de solvers (algoritmos) que permiten resolver distintas categorías de modelos de optimización formulados en un lenguaje matemático determinado (como AMPL y GAMS). El procedimiento es el siguiente: se selecciona un solver que permita resolver nuestro modelo (depende del lenguaje de programación matemática y el tipo de modelo), se sube el archivo del  modelos (y/o datos) y se obtienen los resultados online.

Solver NEOS

6. Geogebra: Es un excelente programa que nos ayuda a graficar distintas formas geométricas y en particular resolver gráficamente modelos de optimización lineales o no lineales. Este programa se puede descargar gratuitamente e instalar en nuestro computador o alternativamente utilizar su aplicación web directamente sin necesidad de descargar el programa.

solucion-grafica-nueva-rest

7. Método Simplex (ProgramacionLineal.net): Es una herramienta que permite resolver modelos de programación lineal a través del método simplex, mostrando paso a paso las respectivas iteraciones, solución óptima y valor óptimo.

tabla-simplex-nueva-variabl

8. Linear Programming: Versión en inglés de los principales artículos de este Blog que trata sobre la Investigación de Operaciones y en particular de la Programación Lineal, con recursos educativos y ejercicios resueltos.

Cómo resolver un modelo de Programación No Lineal con AMPL

La complejidad adicional que representan los modelos de Programación No Lineal en comparación a los modelos de Programación Lineal, justifica el desarrollo de algoritmos especializados que permitan abordar de forma más eficiente la resolución de este tipo de modelos.

En este contexto, uno de los lenguajes de programación matemática más conocidos y confiable para formular diversos modelos de optimización es AMPL (www.ampl.com). Su popularidad ha sido sustentada adicionalmente por el desarrollo de distintos algoritmos de resolución (o solvers) que son compatibles con AMPL y que permiten resolver modelos de Programación Lineal, Programación No Lineal, Programación Entera, entre otras.

página web ampl

Estos solvers han sido resultado del trabajo de prestigiosas universidades y centros de investigación, en algunos casos en conjunto con empresas de software. El servidor NEOS consolida esta información en Internet.

Solver NEOS

A continuación mostraremos cómo resolver un modelo de Programación No Lineal sencillo utilizando la versión estudiantil de AMPL y utilizando el solver de resolución MINOS versión 5.5. Para ello debemos descargar el archivo «amplcml.zip» a nuestro computador, descomprimir éste y luego ejecutar el archivo de nombre «ampl».

Consideremos el siguiente modelo de Programación No Lineal:

Modelo Minimización PNL

La sintaxis utilizada por AMPL es bastante intuitiva como se aprecia a continuación en la resolución del ejemplo:

  • var x1>=0;     # definición de la variable x1 estableciendo condición de no negatividad.
  • var x2>=0;     # definición de la variable x2 estableciendo condición de no negatividad.
  • minimize funcionobjetivo: (x1-2)^2+(x2-4)^2;     # definición de la función objetivo. El nombre de la misma es arbitrario.
  • subject to restriccion1: 2*x1+4*x2<=12;     # se define la inecuación correspondiente a la restricción 1.
  • subject to restriccion2: 4*x1+3*x2<=16;     # se define la inecuación correspondiente a la restricción 2.
  • solve;     # una vez implementado el modelo se ejecuta su resolución haciendo uso de MINOS 5.5 (opción por defecto)

PNL en AMPL

La solución óptima es X1=1,2 y X2=2,4 con valor óptimo V(P)=3,2. (Puedes consultar aquí la Resolución Gráfica de este modelo). Adicionalmente se pueden corroborar los resultados a través de la aplicación de las condiciones de optimalidad de Karush-Kuhn-Tucker (KKT).