Método de Descomposición de Benders

La Descomposición de Benders es, como su nombre lo dice, un Método de Descomposición. La idea de este método es bastante simple: dividir para conquistar. El objetivo es literalmente descomponer el problema en dos partes: El Master Problem (Problema Maestro) y el Subproblem (Subproblema) (también llamado Slave Problem o Problema Esclavo). En el siguiente artículo revisaremos de qué se trata el Método de Descomposición de Benders, en conjunto con la presentación de su uso en un pequeño ejemplo.

Esta metodología fue propuesta por J.F. Benders en 1962, su nombre original es Partitioning procedures for solving mixed-variables programming problems, y como su nombre bien lo dice el método está pensado originalmente para problemas de Programación Entera Mixta. Sin embargo, también se puede aplicar en problemas de Programación Lineal.

El Método de Descomposición de Benders trabaja bajo el concepto de las “variables complicadas”, es decir las variables que hacen que nuestro problema se «complique». Si estas variables no existieran (o más bien, conociéramos su valor de forma anticipada) entonces el problema resultante se supone que es considerablemente más fácil de resolver.

En Programación Entera Mixta, se espera que estas variables “complicadas” sean las enteras, las cuales al fijar su valor, dejan un problema resultante que cumple con una característica muy conveniente: es lineal. Y como cumple con esto, entonces podemos hacer uso de todo lo que conocemos sobre Programación Lineal para realizar la optimización de las variables que (en un principio) fijamos.

Veamos entonces brevemente de que se trata el Método de Descomposición de Benders. Supongamos que tenemos un problema que tiene la siguiente estructura:

descomposición de benders

Como mencionamos al principio, entonces podemos separar este problema en dos partes. A continuación se muestra el Master Problem (Problema Maestro) a la izquierda y el Subproblem (Subproblema) a la derecha:

master y subproblema benders

Como se puede ver, el Master Problem contiene las variables que son enteras, y el Subproblem contiene las variables continuas, por lo que este último cumple con ser un problema de Programación Lineal.

Notar que el lado derecho de las restricciones del problema esclavo son números, ya que los valores de las variables enteras están fijos.

Iniciamos este artículo diciendo que el concepto central es dividir para conquistar: en este caso lo que se hace es resolver el Problema Maestro para obtener los valores de y; con esto, podemos resolver entonces el Subproblema. Se puede observar que el valor de la función objetivo del Subproblema se encuentra en la función objetivo del Problema Maestro, lo anterior se reformulará más adelante.

Una nota relevante: Si te das cuenta, el Problema Maestro para esta formulación no tiene ninguna restricción más que las de dominio. Nada impide que el Problema Maestro también tenga restricciones. Esto estará dado por la estructura del problema que estemos estudiando.

Recuerda siempre: ambos problemas están conectados, por lo que el resultado de uno influye directamente en el resultado del otro. Con esto en consideración, se cumple la siguiente propiedad:

Si el Subproblema es no acotado, entonces el Problema Maestro también lo es, resultando en que el problema original es no acotado.

Si tenemos un problema de Programación Lineal, entonces tenemos que aprovecharlo. ¿Qué es lo primero que se nos viene a la mente con un problema lineal? La respuesta es dualidad. Cada problema lineal (primal) tiene su problema dual asociado, el cual para el caso del problema esclavo enunciado anteriormente, tiene la siguiente estructura:

dual subproblema benders

¿Qué es lo que podemos ver en este problema dual?: Que la región factible (es decir el sub-espacio definido por las restricciones y el dominio del problema) no depende del valor que tomen las variables enteras, y sólo influye en el valor de la función objetivo (notar que están en ella).

Lo anterior entonces nos lleva a la siguiente pregunta: ¿Qué sucede cuando la región factible del problema es vacía? (recuerda que al ser vacía estamos diciendo que nuestro problema dual es infactible). Dos cosas pueden ocurrir:

  1. Al ser el problema dual infactible, entonces su primal es no acotado para algún valor de las variables enteras, en cuyo caso el problema original también es no acotado, o bien
  2. La región factible del problema primal es también infactible para todo valor de las variables enteras, llevando a la conclusión de que el problema original es infactible.

¿Por qué revisamos todo esto?: Porque es importante tenerlo en consideración, ya que como mencionamos anteriormente, al tener un problema esclavo lineal, entonces podemos hacer el uso de los conceptos de dualidad.

¿Para qué la usaremos?: Para reformular nuestro Problema Maestro, y transformarlo en lo que usualmente se conoce como Relaxed Master Problem (RMP). Esta reformulación utiliza las variables duales asociadas a las restricciones del Slave Problem primal.

El Relaxed Master Problem (Problema Maestro Relajado) se puede escribir de la siguiente forma:

problema maestro relajado benders

A las restricciones (1) y (2) se les conoce como restricciones de factibilidad y optimalidad, respectivamente. Además, existe una variable auxiliar z, la cual permite es la responsable de hacer la “conexión” entre el Problema Maestro y el Subproblema (esto se puede ver en las restricciones del tipo (1) y (2)).

Al resolver el RMP vamos a obtener los valores de las variables enteras, las cuales utilizaremos para resolver el Subproblema, como resultado podemos obtener dos cosas:

  1. El sub-problema es infactible, lo cual implica que el problema dual es no acotado. Si esto ocurre, debemos agregar un corte de factibilidad al RMP.
  2. El sub-problema tiene una solución óptima, lo cual implica que el problema dual también la tiene. Si esto ocurre, entonces hay que agregar un corte de optimalidad al RMP.

La última pregunta que nos queda por responder es: ¿Cuántas veces iterar?. Para responder lo anterior debemos definir la cota superior e inferior.

La cota superior corresponde al valor de la función objetivo original de nuestro problema; la cota inferior corresponde a la función objetivo del Master Problem, por lo tanto, debemos continuar hasta que ambos valores sean iguales.

Como la teoría de esta descomposición puede ser un poco compleja, veamos un ejemplo.

Ejemplo Método de Descomposición de Benders (Programación Lineal)

El ejemplo que veremos a continuación corresponde a un problema de Programación Lineal. La aplicación es similar para los problemas de Programación Entera Mixta.

Supongamos que tenemos que resolver el siguiente problema:

ejemplo benders programación lineal

La solución óptima para este problema es: x_{1}=0, x_{2}=0,714 e y=1,571 con un valor para la función objetivo (valor óptimo) de 5,285. La solución óptima del problema anterior se puede alcanzar de forma sencilla a través del Método Simplex Dual o el Método Simplex de 2 Fases (y por cierto a través de otros procedimientos y herramientas computacionales como Solver de Excel).

Vamos a descomponer el problema de la siguiente forma: recuerda que utilizaremos el RMP (Problema Maestro Relajado). Sea esta la primera iteración, K=1.

iteración 1 benders

Al resolver el RMP de la primera iteración, obtenemos como solución óptima y=0 y z=0; lo cual utilizaremos para resolver el Subproblema. Con y=0, el resultado del Subproblema es: x_{1}=2,2 y x_{2}=0,4 con un valor en la función objetivo de 5,6.

Ahora debemos calcular la cota superior (UB) y cota inferior (LB):

cotas benders

Como difieren el valor de las cotas, debemos continuar. Gracias a la herramienta “Análisis de Sensibilidad” del Solver en Excel, podemos obtener el valor de las variables duales asociadas a las restricciones del Subproblema (también podríamos obtener el valor de las variables duales óptimas al utilizar el Teorema de Holguras Complementarias). Esos valores son: \lambda_{1}=-1,6 y \lambda_{2}=-0,2.

Estos valores nos permiten crear el siguiente corte de optimalidad: -1,6(-3+y)-0,2(-4+3y)\leq z, el cual agregamos al Problema Maestro:

corte benders

Hacemos K=2 (contador de iteraciones) y resolvemos el Problema Maestro nuevamente. Este corte nos permite encontrar una nueva solución óptima: y=2,545 y z=0. Con este valor de y, el resultado del Subproblema es: x_{1}=0 y x_{2}=0,227 con un valor en la función objetivo de 0,68.

Ahora debemos calcular la cota superior (UB) y cota inferior (LB):

cota 2 benders

Al ver las variables duales para las restricciones del Subproblema tenemos que: \lambda_{1}=-1,5 y \lambda_{2}=0, lo cual permite crear el siguiente corte de optimalidad el cual agregamos al Problema Maestro:

corte 2 benders

Hacemos K=3 y resolvemos el Problema Maestro nuevamente. La nueva solución óptima para el Problema Maestro es y=1,571 y z=2,142 con un valor óptimo de 5,285. Con y=1,571 la solución del Subproblema es: x_{1}=0 y x_{2}=0,714 con un valor en la función objetivo de 2,148.

Ahora debemos calcular la cota superior e inferior:

cota 3 benders
convergencia descomposición de benders

Como ambas cotas (superior e inferior) son iguales, podemos detenernos. Hemos encontrado la solución óptima para nuestro problema de Programación Lineal. (Mis sinceros agradecimientos a mi amigo Javier Maturana Ross por su contribución con este detallado tutorial y los créditos correspondientes al profesor Yuping Huang por el ejemplo presentado en este artículo).

Ejemplo del Método Simplex (Tutorial y Cómo Funciona)

En el siguiente artículo detallaremos cómo funciona el Método Simplex a través de un ejemplo sencillo correspondiente a un modelo de Programación Lineal que considera 3 variables de decisión.

El Método Simplex corresponde a un algoritmo iterativo publicado por George Bernard Dantzig en el año 1947 en donde se busca alcanzar el máximo (o mínimo) de una función lineal compuesta por un conjunto de variables que deben satisfacer condiciones impuestas por restricciones lineales en forma de inecuaciones.

En este contexto, el objetivo de este artículo es definir en detalle distintas aproximaciones para la resolución de un modelo de Programación Lineal utilizando el Método Simplex, además de discutir sobre sus principales características.

Con tal propósito en perspectiva consideremos el siguiente modelo de optimización lineal:

ejemplo método simplex

Ejemplo del Método Simplex (Utilizando Diccionarios)

Un paso preliminar consiste en incorporar las denominadas variables de holgura. De modo de comprender este concepto consideremos la primera restricción:

2x_{1}+3x_{2}+x_{3}\leq 5

Para cada solución factible x_{1},x_{2},x_{3}, el valor del lado izquierdo será a lo más el valor del lado derecho; o eventualmente existirá una diferencia (holgura) entre estos 2 valores.

De esta forma definimos x_{4} como variable de holgura de dicha restricción, la cual se puede denotar por x_{4}=5-2x_{1}-3x_{2}-x_{3}, donde x_{4}\geq 0. De forma análoga se pueden definir las variables de holgura (no negativas) x_{5}x_{6} para las restricciones 2 y 3, respectivamente. Finalmente podemos describir la función objetivo 5x_{1}+4x_{2}+3x_{3} utilizando z de forma compacta.

En resumen, para cada selección de valores de las variables x_{1},x_{2}x_{3} podemos definir valores para las variables x_{4},x_{5},x_{6}, y z utilizando las siguientes fórmulas (conocido comúnmente como diccionarios según la terminología utilizada en el libro Linear Programming de Vasek Chvátal):

  • x_{4}=5-2x_{1}-3x_{2}-x_{3}
  • x_{5}=11-4x_{1}-x_{2}-2x_{3}
  • x_{6}=8-3x_{1}-4x_{2}-2x_{3}
  • z=5x_{1}+4x_{2}+3x_{3}

El objetivo del Método Simplex es lograr sucesivas mejoras para el valor de la función objetivo asociada a la selección de alguna solución factible. Repetir dicho procedimiento un numero finito de veces debería permitir eventualmente alcanzar la solución óptima del problema lineal en estudio.

Para inicializar el Método Simplex necesitamos una solución factible. En nuestro ejemplo esto es sencillo y se puede alcanzar simplemente fijando las variables x_{1},x_{2},x_{3} en cero. De esta forma se alcanzan los siguientes resultados:

x_{1}=0,x_{2}=0,x_{3}=0,x_{4}=5,x_{5}=11,x_{6}=8,z=0

En el contexto del objetivo planteado anteriormente, debemos buscar una solución factible que permita alcanzar un mayor valor para z. Si, por ejemplo, mantenemos x_{2}=x_{3}=0 e incrementamos el valor de x_{1} obtenemos z=5x_{1}>0, de modo que si x_{1}=1 se obtiene z=5 (y x_{4}=3,x_{5}=7,x_{6}=5). Mejor aún, si x_{1}=2 (manteniendo x_{2}=x_{3}=0), se obtiene z=10 (y x_{4}=1,x_{5}=3,x_{6}=2).

Sin embargo, si asumimos x_{1}=3 (conservando x_{2}=x_{3}=0) el valor de la función objetivo ahora es z=15, pero x_{4}=-1,x_{5}=-1,x_{6}=-1 que claramente no satisface las condiciones de no negatividad para las variables.

Por tanto la pregunta relevante es: ¿cuánto se puede incrementar el valor de x_{1} (manteniendo x_{2}=x_{3}=0 al mismo tiempo) y seguir conservando la factibilidad (x_{4},x_{5},x_{6}\geq 0)?.

La condición x_{4}=5-2x_{1}-3x_{2}-x_{3}\geq 0 implica x_{1}\leq \frac{5}{2}; de forma similar x_{5}\geq 0 implica x_{1}\leq \frac{11}{4}x_{6}\geq 0 implica x_{1}\leq \frac{8}{3}. Claramente de estas 3 cotas para la variable x_{1} la más restrictiva es x_{1}\leq \frac{5}{2}, de modo que incrementamos el valor de x_{1} hasta ese valor de modo de obtener una nueva solución:

x_{1}=\frac{5}{2},x_{2}=0,x_{3}=0,x_{4}=0,x_{5}=1,x_{6}=1/2,z=\frac{25}{2}

Que claramente constituye una mejora para el valor de la función objetivo en comparación al valor inicial z=0.

A continuación debemos buscar una nueva solución factible que sea aún mejor que la que acabamos de encontrar. Para ello la variable x_{1} que cambió su valor desde cero a un número positivo (12,5), debe cambiar su lugar desde el lado derecho al lado izquierdo del sistema de ecuaciones. De forma análoga, la variable x_{4} que cambio su valor de un número positivo a cero debe cambiar de lugar desde el lado derecho al lado izquierdo.

De esta forma y luego de cierta manipulación algebraica podemos reescribir x_{1} en términos de x_{2},x_{3},x_{4} según se observa a continuación:

x_{1}=\frac{5}{2}-\frac{3}{2}x_{2}-\frac{1}{2}x_{3}-\frac{1}{2}x_{4}

Luego, con el objetivo de expresar x_{5},x_{6}z en términos de x_{2},x_{3},x_{4}, simplemente substituimos el resultado anterior en las filas correspondientes:

  • x_{5}=11-4(\frac{5}{2}-\frac{3}{2}x_{2}-\frac{1}{2}x_{3}-\frac{1}{2}x_{4})-x_{2}-2x_{3}
  • x_{5}=1+5x_{2}+2x_{4}
  • x_{6}=8-3(\frac{5}{2}-\frac{3}{2}x_{2}-\frac{1}{2}x_{3}-\frac{1}{2}x_{4})-4x_{2}-2x_{3}
  • x_{6}=\frac{1}{2}+\frac{1}{2}x_{2}-\frac{1}{2}x_{3}+\frac{3}{2}x_{4}
  • z=5(\frac{5}{2}-\frac{3}{2}x_{2}-\frac{1}{2}x_{3}-\frac{1}{2}x_{4})+4x_{2}+3x_{3}
  • z=\frac{25}{2}-\frac{7}{2}x_{2}+\frac{1}{2}x_{3}-\frac{5}{2}x_{4}

De esta forma nuestro sistema de ecuaciones (diccionario) queda definido por:

  • x_{1}=\frac{5}{2}-\frac{3}{2}x_{2}-\frac{1}{2}x_{3}-\frac{1}{2}x_{4}
  • x_{5}=1+5x_{2}+2x_{4}
  • x_{6}=\frac{1}{2}+\frac{1}{2}x_{2}-\frac{1}{2}x_{3}+\frac{3}{2}x_{4}
  • z=\frac{25}{2}-\frac{7}{2}x_{2}+\frac{1}{2}x_{3}-\frac{5}{2}x_{4}

Como lo hicimos en la primera iteración debemos intentar incrementar el valor de la función objetivo (z) seleccionando una variable adecuada en el lado derecho, mientras que al mismo tiempo mantenemos las restantes variables del lado derecho en cero. En este sentido se puede observar que aumentar el valor de las variables x_{2}x_{4} generaría una disminución en el valor de z que va en sentido contrario a nuestro objetivo de maximizar el valor de la función objetivo.

Por tanto, la única selección de una variable en el lado derecho que permitirá aumentar el valor de z es seleccionar la variable x_{3}.

¿Cuánto debemos incrementar el valor de x_{3}?. La respuesta se puede obtener directamente del sistema de ecuaciones anterior, considerando x_{2}=x_{4}=0, la restricción x_{1}\geq 0 implica que x_{3}\leq 5; la restricción x_{5}\geq 0 no impone condiciones adicionales y la restricción x_{6}\geq 0 implica x_{3}\leq 1. En consecuencia x_{3}=1 es el mejor valor que puede adoptar dicha variable.

La nueva solución corresponde a:

x_{1}=2,x_{2}=0,x_{3}=1,x_{4}=0,x_{5}=1,x_{6}=0,z=13

El valor de z paso de 12,5 a 13 al cabo de una iteración del Método Simplex.

A continuación actualizamos el sistema de ecuaciones donde las variables que adoptan valores positivos x_{1},x_{3},x_{5} se encontraran en el lado izquierdo, mientras las variables igual a cero estarán en el lado derecho. De este modo pasamos la variable x_{3} al lado izquierdo, donde x_{3}=1+x_{2}+3x_{4}-2x_{6} que permite substituir en el resto de las ecuaciones:

  • x_{3}=1+x_{2}+3x_{4}-2x_{6}
  • x_{1}=2-2x_{2}-2x_{4}+x_{6}
  • x_{5}=1+5x_{2}+2x_{4}
  • z=13-3x_{2}-x_{4}-x_{6}

Notar que no es posible seguir aumentando el valor de la función objetivo z mediante un incremento de las variables del lado derecho x_{2},x_{4},x_{6} (en efecto, el valor de z decrecería). En consecuencia estamos en presencia de la solución óptima del problema: x_{1}=2,x_{2}=0,x_{3}=1,x_{4}=0,x_{5}=1,x_{6}=0 con valor óptimo z=13.

El procedimiento anterior basado en diccionarios favorece una mejor comprensión conceptual de los fundamentos sobre los que se basa el Método Simplex. De forma complementaria a continuación presentaremos a modo de contraste las iteraciones del Método Simplex utilizando tablas (o tableau) que comúnmente corresponde a la forma en la cual se presenta el algoritmo en cursos de pregrado.

Ejemplo del Método Simplex (Utilizando Tableau)

Consideremos nuevamente nuestro problema de Programación Lineal:

ejemplo método simplex

A continuación incorporamos las variables de holgura (no negativas) x_{4},x_{5},x_{6} que por definición tienen coeficiente nulo (cero) en la función objetivo. De esta forma obtenemos la forma estándar (*):

forma estándar ejemplo método simplex

(*). Para nuestros efectos consideraremos que la forma estándar de un modelo de Programación Lineal esta dada por Minimizar[c^{t}x, Ax=b,x\geq 0], siendo este formato el que preferentemente hemos utilizado para desarrollar las iteraciones del Método Simplex en otros artículos relacionados en nuestro sitio. En consecuencia la selección de dicho formato es meramente convencional.

Retomando nuestro ejemplo, el tableau inicial queda definido por:

tableau inicial método simplex

Las variables de holgura definen una Solución Básica Factible Inicial, con x_{4}=5,x_{5}=11,x_{6}=8 (las variables no básicas inicialmente corresponden a las variables originales del modelo, es decir, x_{1},x_{2},x_{3} que por definición adoptan un valor igual a cero.

¿Cómo verificar que el tableau inicial representa una solución básica factible óptima para el problema?.

Criterio de Optimalidad: Si en una iteración del Método Simplex se dispone de una solución básica factible y adicionalmente todos los costos reducidos son mayores o iguales que cero, parar ya que la actual solución básica factible es óptima.

En el ejemplo propuesto si bien nos encontramos frente a una solución básica factible el costo reducido de las variables no básicas son negativos, por tanto no se cumple el criterio de optimalidad, es decir, se puede seguir mejorando el valor de la función objetivo.

En este sentido consideraremos arbitrariamente x_{1} como la variable que ingresa a la base, aun cuando no hay certeza que la selección de la variable no básica con el costo reducido más negativo contribuya necesariamente a la Rapidez de Convergencia del Método Simplex.

La variable que deja la base para dar lugar a x_{1} se obtiene del criterio de factibilidad:

Criterio de Factibilidad: Para decidir que variable básica deja la base, es necesario calcular el mayor valor que puede tomar la variable no básica que entra a la base que garantice la factibilidad de la nueva solución básica. Para ello se considera un cuociente entre el valor de la solución básica factible actual y los coeficientes mayores a cero en la columna de la variable entrante. Si todos los cuocientes son negativos el Problema es No Acotado y por tanto no existe solución óptima.

En el ejemplo el criterio de factibilidad para la presente iteración esta dado por:

Min[\frac{5}{2},\frac{11}{4},\frac{8}{3}]=\frac{5}{2}

El menor cuociente se alcanza en la primera fila (restricción) que determina la variable que debe abandonar la base, en este caso, la variable x_{4}. Luego se actualiza la tabla realizando operaciones filas considerando el denominador del mínimo cuociente como pivote. El objetivo es alcanzar en la columna de la variable x_{1} lo que actualmente disponemos en la columna de la variable x_{4}.

Por ejemplo, podemos dividir la fila 1 por 2 de modo de obtener un 1 en la posición del pivote. Luego sobre esta nueva fila 1 podemos multiplicarla por -4 y sumarla a la fila 2. También se puede alcanzar un cero para la variable x_{1} en la fila 3 multiplicando por -3 la nueva fila 1 y sumándola a la fila 3. Finalmente para lograr un cero en el costo reducido de x_{1} se multiplica por 5 la nueva fila 1 y se suma a la fila 4.

De este modo el tableau del Método Simplex al cabo de una iteración queda de la siguiente forma:

segundo tableau método simplex

La solución básica factible actual corresponde a: x_{1}=\frac{5}{2},x_{2}=0,x_{3}=0,x_{4}=0,x_{5}=1,x_{6}=1/2 con valor en la función objetivo z=\frac{25}{2}. Se puede apreciar que dicho resultado es consistente con el enfoque de diccionarios utilizado inicialmente.

Claramente no se satisface el criterio de optimalidad dado que la variable no básica x_{3} tiene costo reducido negativo. Por ello x_{3} ingresa a la base y por tanto debemos calcular nuevamente el criterio de factibilidad para determinar la variable que deberá dejar la base:

Min[\frac{5/2}{1/2},\frac{1/2}{1/2}]=1

El pivote ahora se encuentra en la fila 3 y en consecuencia la variable básica x_{6} debe dejar la base. Notar que no se ha considerado para el cálculo del criterio de factibilidad el coeficiente de la variable x_{3} correspondiente a la fila 2 del tableau anterior (cuyo valor es cero y por tanto el cuociente se indefine).

Actualizamos el tableau del Método Simplex obteniendo los siguientes resultados:

tableau óptimo método simplex

Los valores que adoptan las variables básicas correspondientes a esta nueva iteración es x_{1}=2,x_{2}=0,x_{3}=1,x_{4}=0,x_{5}=1,x_{6}=0 que además representa la solución óptima del modelo de Programación Lineal (dado el cumplimiento del criterio de optimalidad). Luego el valor óptimo corresponde a z=13.

Importante: Existen herramientas computacionales y aplicaciones que permiten resolver online un problema de Programación Lineal mediante el Método Simplex. A continuación se presenta un extracto de los resultados alcanzados para nuestro ejemplo utilizando la aplicación disponible en http://www.programacionlineal.net/simplex.html.

método simplex online ejemplo

Método Simplex (Conclusiones)

El ejemplo que hemos desarrollado en este artículo busca presentar de forma sencilla y didáctica los principales fundamentos asociados al Método Simplex. Cabe destacar que ha sido necesario para la aplicación del algoritmo llevar el modelo original a su forma estándar que como se discutió anteriormente puede tener distintas representaciones según la bibliografía que se consulte.

En este contexto, cada problema de Programación Lineal en su forma estándar cumple con las siguientes propiedades establecidas en el Teorema Fundamental de la Programación Lineal:

  1. Si el problema no tiene solución óptima entonces es no-acotado o infactible.
  2. Si tiene una solución factible, tiene una solución básica factible.
  3. Si el problema tiene solución óptima, tiene una solución básica factible óptima.

Cabe destacar que no siempre se dispone de una solución básica factible en las variables originales del modelo (luego de llevar el problema a su forma estándar). Si bien existen diversas estrategias algorítmicas para enfrentar esta dificultad, se propone al lector revisar los tutoriales que hemos desarrollado sobre esta problemática, en particular respecto al Método Simplex de 2 Fases, Método de la M Grande y Método Simplex Dual.

Adicionalmente con el objetivo de resumir algunas ideas principales del algoritmo hemos preparado una infografía que hemos llamado 10 Cosas que Necesitas saber sobre el Método Simplex.

Finalmente quisiéramos recordar a nuestros usuarios que en el Blog de Gestión de Operaciones se pueden encontrar a la fecha más de 80 publicaciones relativas a la Programación Lineal y la Investigación de Operaciones. De modo de favorecer una rápida búsqueda ingresa al menú Cómo Comenzar. Por último agradeceríamos compartir y difundir este material en la medida que haya sido considerado útil y evaluar este tutorial utilizando las estrellas al final de esta publicación.

Cómo enfrentar una Solución Infactible obtenida con el Método Húngaro

En algunos casos los ceros que se producen en los Pasos 1 y 2 del Método Húngaro no producen una solución factible en forma directa, es decir, la asignación alcanzada es infactible. En este caso se necesitan más pasos para alcanzar la asignación óptima (factible). Para ilustrar esta situación consideremos el siguiente ejemplo que consiste en la asignación a costo mínimo de 4 ingenieros a 4 tareas, donde cada ingeniero debe desempeñar exactamente una tarea:

ingenieros-y-tareas

Al aplicar los Pasos 1 y 2 del Método Húngaro se obtiene la siguiente matriz reducida:

ejemplo-metodo-hungaro

Notar que los elementos cero (marcados con color azul) no permiten asignar una tarea por ingeniero. Por ejemplo, si se asigna el ingeniero 1 a la tarea 1, se eliminará la columna 1, y el ingeniero 3 no tendrá elemento cero en las tres columnas restantes. Para solucionar este obstáculo se agrega el siguiente paso al procedimiento:

Paso 2a: Si no se puede asegurar una asignación factible (con todos los elementos cero) con los Pasos 1 y 2.

  • Trazar la cantidad mínima de líneas horizontales y verticales en la última matriz reducida que cubran todos los elementos cero.

  • Seleccionar el elemento mínimo no cubierto, restarlo de todo elemento no cubierto y a continuación sumarlo a todo elemento en la intersección de dos líneas.

  • Si no se puede encontrar una asignación factible entre los elementos cero que resulten, repetir el Paso 2a. En caso contrario, seguir en el Paso 3 para determinar la asignación óptima.

Al aplicar el Paso 2a a la matriz reducida presentada anteriormente, se obtienen las celdas color amarillo según se aprecia a continuación:

paso-2a-metodo-hungaro

La celda de valor mínimo sin fondo amarillo es igual a $1 (destacada con color rojo). Este elemento se resta de todas las celdas sin fondo amarillo y se suma a a las celdas de las intersecciones (destacadas con color azul).

resultado-metodo-hungaro

La solución óptima (por cierto factible) se ha marcado con fondo azul: el ingeniero 1 realiza la tarea 1, el ingeniero 2 la tarea 3, el ingeniero 3 la tarea 2 y el ingeniero 4 la tarea 4 . El costo total (valor óptimo) de esta asignación es $1+$10+$5+$5=$21.




Casos Especiales en la Programación Lineal detectados con el Método Simplex

En la resolución de un modelo de Programación Lineal se pueden enfrentar ciertos casos especiales que merecen particular atención. Estos casos (infinitas soluciones óptimas, problema no acotado sin solución óptima, problema infactible, solución óptima degenerada) se pueden detectar a través de la aplicación del Método Simplex según hemos tratado previamente en el Blog. A continuación un resumen de dichos escenarios:

Infinitas Soluciones Óptimas: Se detecta cuando luego de alcanzar una solución básica factible óptima, al menos una variable no básica tiene costo reducido igual a cero. La siguiente imagen representa esta situación donde la solución óptima (infinitas) se alcanza en el tramo entre los vértices B y C. En efecto se puede representar de forma general las soluciones óptimas como: (x,y)=\lambda (0,3)+(1-\lambda )(2,2) con 0\leq \lambda\leq 1.

Grafico Infinitas Soluciones Optimas

Problema No Acotado: En las iteraciones del Método Simplex un problema no acotado se detecta cuando al calcular el criterio de factibilidad o mínimo cuociente que determina la variable que deja la base, todas las entradas en la columna de la variable no básica entrante son negativas o cero, por tanto no existe denominador válido (mayor a cero) que permita determinar el pivote. En la siguiente representación gráfica se puede apreciar que las curvas de nivel de la función objetivo crecen en la dirección del vector gradiente, donde en particular el dominio de soluciones factibles es no acotado para los valores que puede adoptar la variable x_{2}.

problema no acotado

Es importante destacar que el hecho que un dominio de soluciones factibles sea no acotado no implica necesariamente que el problema de Programación Lineal no tiene solución.

Problema Infactible: Si al finalizar la Fase I del Método Simplex de 2 Fases el valor de la función objetivo es distinto a cero, entonces el problema lineal es infactible, es decir, el dominio de soluciones factibles es vacío al existir restricciones incompatibles (por ejemplo en el gráfico a continuación el área azul no se intersecta con el área color rojo).

dominio-infactible-problema

Solución Óptima Degenerada: Cuando se presenta un empate el el cálculo de la condición de factibilidad del Método Simplex, al menos una variable básica será cero en la siguiente iteración, caso en el cual se dice que la nueva solución es degenerada. Esto implica que el modelo tiene al menos una restricción redundante.

solucion-optima-degenerada-


Cómo detectar que un Problema de Programación Lineal es infactible con el Método Simplex de 2 Fases

Un problema infactible en Programación Lineal es una situación que se detecta cuando en la aplicación del Método Simplex de 2 Fases el valor óptimo del problema de la Fase 1 es distinto a cero (para continuar a la Fase 2 se requiere que el valor óptimo de la Fase 1 sea cero). Cabe recordar que un problema infactible es aquel cuyo dominio de soluciones factibles es vacío.

Consideremos el siguiente modelo de Programación Lineal en 2 variables que nos permitirá representar dicha situación:

problema-lineal-infactible

Agregamos las siguientes variables al modelo para aplicar el Método Simplex de 2 Fases: x_{3} (holgura), x_{4} (exceso), x_{5} (auxiliar).

fase-1-infactible

Definiendo el problema inicial de la Fase 1:

tabla-inicial-fase-1-infact

A continuación llevamos el costo reducido de la variable x_{5} a cero, multiplicando por -1 la fila 2 y sumando ésta a la fila 3:

simplex-2-fases-infactible

Para favorecer la rapidez de convergencia del método x_{2} entra a la base. Luego calculamos el criterio del mínimo cuociente: Min \begin{Bmatrix}{\frac{2}{1}, \frac{12}{4}}\end{Bmatrix}=2 por tanto x_{3} deja la base. Actualizamos la tabla:

infactible-simplex-2-fases

Notar que todas las variables no básicas x_{1}, x_{3}, x_{4} tienen costos reducidos mayores o iguales a cero. Adicionalmente las variables básicas x_{2}, x_{5} cumplen con las condiciones de no negatividad. En consecuencia hemos finalizado la Fase 1 del Método Simplex de 2 Fases, sin embargo, el valor de la función objetivo es distinto de cero (en el ejemplo es -4) lo que determina que el problema es infactible.

La siguiente representación gráfica del problema anterior se puede realizar con Geogebra. El área achurada color rojo corresponde a la intersección de los conjuntos de factibilidad definido por la restricción 1 y las de no negatividad. Por otra parte el área achurada color azul es la intersección de los conjuntos de factibilidad definido por la restricción 2 y las de no negatividad. Luego resulta evidente que la intersección de dichos conjuntos (rojo y azul) es vacío, por tanto no existen valores que puedan adoptar las variables de decisión y satisfacer de forma simultanea todas las restricciones del problema.

dominio-infactible-problema