Formulación de un Problema de Localización y Transporte (Programación Entera Mixta)

Un modelo de Programación Entera Mixta (PEM) es un híbrido entre la Programación Lineal (PL) y la Programación Entera (PE), es decir, corresponde a una categoría particular de modelamiento matemático con características similares a la Programación Lineal pero donde un subconjunto de las variables de decisión deben adoptar valores enteros o binarios. Este característica de la Programación Entera Mixta permite representar situaciones de naturaleza real como los problemas que consideran la inclusión de costos fijos. En este contexto el siguiente artículo aborda la formulación de un Problema de Localización y Transporte el cual se describe a continuación.

Una ciudad tiene 10 zonas o áreas urbanas cada una de los cuales genera una determinada cantidad de basura (en toneladas) durante el periodo de planificación según se describe a continuación:

total-basura-generada-por-z

La basura generada debe ser transportada a centros de depósitos o vertederos entre un total de 5 candidatos posibles, cada uno de los cuales tiene un costo fijo de construcción en dólares.

costo-fijo-depositos

Adicionalmente se ha estimado el costo de transportar una tonelada de basura desde una zona a cada uno de los potenciales centros de depósito, el cual depende básicamente de la distancia a recorrer y el tipo de transporte seleccionado.

costos-transporte-zonas-a-d

Formule un modelo de Programación Entera Mixta que permita seleccionar los centros de depósito a construir y la política de transporte de basura que minimiza los costos totales.

1. Variables de Decisión: Sea i=1,…,10 las Zonas y j=1,…,5 los Depósitos:

variables-decision-localiza

2. Función Objetivo: Con el propósito de trabajar con una notación compacta podemos definir el siguiente conjunto de parámetros para el modelo de optimización:

  • Tij: Costo de transportar una tonelada de basura desde la Zona i al Depósito j
  • Fj: Costo fijo de construcción del Depósito j

La función objetivo en consecuencia se puede representar a través de la siguiente expresión:

funcion-objetivo-localizaci
3. Restricciones:

Se debe despachar (transportar) la totalidad de la basura que genera cada Zona (definimos para ello el parámetro Ai como la cantidad de basura en toneladas que genera la Zona i).

despacho-de-basura

Se debe respetar la capacidad de almacenamiento de basura para cada Depósito, utilizándolo sólo en caso que se decida su construcción. Para ello definimos el parámetro Cj como la capacidad de almacenamiento de basura en toneladas del Depósito j. Lo anteriormente expuesto explica la ponderación de la capacidad por la variable binaria para cada j.

capacidad-de-los-depositos-

Finalmente establecemos condiciones de no negatividad para Xij>=0 Para todo i,j y Yj{0,1} para todo j.

¿Quieres saber cuál es la solución de este problema?. Te recomendamos leer el siguiente artículo: Solver, Premium Solver Pro y What’sBest! en la resolución del Problema de Localización y Transporte.

Articulos Relacionados:

, , , ,

Sin Comentarios aun.

Deja un comentario

Nuestro Sitio esta Alojado en