Ejemplo del Algoritmo de Branch and Bound (Ramificación y Acotamiento)

El método de Branch and Bound (o Ramificación y Acotamiento) es un algoritmo diseñado para la resolución de modelos de Programación Entera. Su operatoria consiste en linealizar el modelo de Programación Entera, es decir, resolver éste como si fuese un modelo de Programación Lineal y luego generar cotas en caso que al menos una variable de decisión (entera) adopte un valor fraccionario.

El algoritmo genera en forma recursiva cotas (o restricciones adicionales) que favorecen la obtención de valores enteros para las variables de decisión. En este contexto resolver el modelo lineal asociado a un modelo de Programación Entera se conoce frecuentemente como resolver la relajación continua del modelo entero.

Ejemplo Branch & Bound (Ramificación y Acotamiento)

Consideremos el siguiente modelo de Programación Entera el cual resolveremos con el algoritmo de Branch and Bound:

Problema Branch and Bound

El paso inicial consiste en resolver este problema como si fuese un modelo de Programación Lineal (relajación continua). Si la solución de dicho problema llegara a respetar las condiciones de integralidad para las variables de decisión, ésta ya sería la solución óptima del problema entero.

Si bien este procedimiento se puede extender a problemas de mayor dimensión, utilizamos un modelo en 2 variables para poder representar los pasos del algoritmo gráficamente. El gráfico a continuación muestra dicha resolución:

Relajación Continua Branch and Bound

La solución óptima del problema lineal asociado (que llamaremos P0) es X1=2,8 y X2=1,6 con valor óptimo V(P0)=20,8. Claramente esta solución no cumple las condiciones de integralidad para las variables de decisión por tanto es necesario generar cotas o restricciones adicionales de modo de poder obtener soluciones enteras. Para ello debemos seleccionar una de las 2 variables de decisión con valores fraccionarios para poder generar cotas. En estricto rigor es indistinto cuál de ellas seleccionemos debido a que el método nos debe llevar a conclusiones similares (aun cuando la cantidad de pasos requeridos o rapidez de convergencia cambie).

En nuestro ejemplo generaremos cotas adicionales para la variable X1 aproximando su valor actual al entero inferior más cercano (P1) y entero superior más cercano (P2).

La resolución gráfica del problema 1 (P1) nos da como solución óptima X1=2 y X2=2 que es una solución entera. El valor óptimo del problema 1 es V(P1)=20. Notar que V(P1)<V(P0) lo cual es natural dado que el dominio de soluciones factibles del P1 es menor (subconjunto) al dominio de soluciones factibles de P0.

P1 Branch and Bound

Análogamente la resolución gráfica (Método Gráfico) del problema 2 (P2) determina que X1=3 y X2=4/3 con V(P2)=20 según se observa a continuación:

P2 Branch and Bound

Luego no sería del todo necesario seguir desarrollando el algoritmo dado que si generamos cotas para la variable X2 del P2 en ningún caso podríamos obtener una solución entera con valor óptimo superior a 20 (valor que reporta en la función objetivo la actual solución entera de P1) y por tanto podríamos concluir que X1=2 y X2=2 es la solución óptima del problema entero. No obstante el siguiente diagrama muestra los pasos adicionales en caso que quisiera agregar cotas adicionales a partir del P2.

Solución Branch and Bound

Un argumento similar al expuesto previamente en este caso explicaría la no necesidad de seguir ramificando el P21. Se propone al lector verificar que se obtiene la misma solución óptima si luego del P0 ramificamos a través de X2 agregando las restricciones X2<=1 y X2>=2.

Problema de la Dieta con variables enteras resuelto con Solver de Excel

En un artículo previo tratamos el Problema de la Dieta como una aplicación característica de la Programación Lineal discutido ampliamente en los Cursos de Investigación de Operaciones. El problema consiste básicamente en encontrar una combinación de alimentos óptima que permita satisfacer ciertos requerimientos nutricionales mínimos y adicionalmente tenga el menor costo asociado a la selección de los mismos.

Una vez obtenida la solución óptima y valor óptimo de dicho modelo nos podemos enfrentar al escenario donde todas o algunas de las variables de decisión adoptan valores fraccionarios. Si bien esta situación es aceptada en los modelos de Programación Lineal (en efecto constituye un supuesto básico de la Programación Lineal), puede resultar de interés simular una nueva solución donde las variables de decisión adopten valores enteros.

El siguiente tutorial muestra cómo incorporar las condiciones de integralidad al Problema de la Dieta, lo que da origen a un modelo de Programación Entera.

Se puede observar que hemos utilizado un formato similar al modelo de Programación Lineal, sin embargo, se incorpora la condición de integralidad para las variables de decisión como si fuese una restricción adicional. Adicionalmente en las Opciones de Solver debemos desactivar la selección de «Adoptar modelo lineal» debido a que ahora el modelo es de Programación Entera (esta indicación es válida para las versiones de Office 2007 y anteriores).

La tabla a continuación resume los resultados del Problema de la Dieta resuelto como un modelo de optimización lineal o entero:

Resultados del Problema de la Dieta

Se puede observar que el valor óptimo del Problema Entero es superior al del Problema Lineal. Siendo éste un problema de minimización esta situación es natural dado que el dominio de soluciones factibles del problema entero está contenido en el dominio del problema lineal (es un subconjunto) y por tanto no podríamos encontrar nada mejor (más económico en este caso) que el valor óptimo del problema lineal.

Es importante destacar adicionalmente que para obtener la solución óptima de un problema entero NO es suficiente con aproximar los resultados fraccionarios del problema lineal asociado, por ejemplo, al entero superior o entero inferior más cercano. En consecuencia se requiere de algoritmos específicos para la resolución de modelos de Programación Entera, siendo el Algoritmo de Ramificación y Acotamiento (Branch & Bound) uno de los más populares.

Problema de Asignación en Programación Entera resuelto con Solver

Cuando necesitamos asignar recursos escasos a determinadas funciones y dichos recursos no son fraccionables, la utilización de modelos de Programación Entera resultan ser de utilidad para la toma de decisiones. En este contexto los problemas de asignación de personal a determinadas tareas es una aplicación típica de la Programación Entera que a continuación desarrollaremos a través de un ejemplo.

Problema de Asignación

Consideremos una empresa que dispone de 5 ingenieros que deben desarrollar 7 proyectos. La tabla a continuación resume el tiempo que demora cada ingeniero (en horas) en completar un determinado proyecto. El problema consiste en determinar una asignación óptima que permita realizar cada uno de los proyectos con la limitante que por motivos estratégicos cada ingeniero debe desarrollar al menos un proyecto y en ningún caso hacer más de 2 proyectos. Por supuesto se busca que el tiempo requerido para realizar los 7 proyectos sea el menor posible.

Tabla Asignación

Una alternativa sería buscar intuitivamente una asignación que cumpla con los requisitos de la empresa y tenga un bajo tiempo asociado. Sin embargo, este tipo de estrategias de resolución queda claramente acotada a problemas de tamaño menor y ni siquiera en ese tipo de situaciones nos asegura la mejor solución posible. Por ello definiremos el siguiente modelo de optimización de Programación Entera:

1. Variables de Decisión: Utilizamos las siguientes variables de decisión binarias

Variables de Decisión Asignación

2. Función Objetivo: Minimizar el tiempo total requerido para completar los proyectos

Función Objetivo Asignación

Donde Tij (parámetros) es el tiempo (en horas) requerido por el ingeniero i en realizar el proyecto j. Por ejemplo T(A,P5)=7.

3. Restricciones:

Cada proyecto debe ser realizado por un solo ingeniero:

Restricción Asignación

Cada ingeniero debe ser al menos un proyecto y no puede hacer más de 2:

Restricción Asignación Ingenieros

El siguiente tutorial muestra cómo resolver este problema de asignación con Solver de Excel:

Se puede observar que para efectos de Solver, las variables de decisión binarias se deben definir como una restricción adicional. También puede resultar que luego de resolver Solver no encuentre inmediatamente la mejor solución posible. Para enfrentar esta situación se puede «volver a resolver» sobre la solución que el programa nos haya proporcionado hasta el momento para verificar si se puede lograr algo mejor. Esta situación es la que sucedió en el tutorial y a continuación se muestra la solución óptima (final) encontrada por Solver.

Solución Óptima Problema de Asignación

En total se requieren 56 horas para realizar los 7 proyectos. El ingeniero A realiza el P7, el ingeniero B el P3 y P5, el ingeniero C el P6, el ingeniero D el P2 y P4 y el ingeniero E el P1. Notar que cada proyecto es realizado por un ingeniero y cada ingeniero al menos realiza un proyecto, pero no más de 2 proyectos.