Problema de Transbordo en una Red Logística de Transporte Multiperíodo

Una empresa multinacional de productos de consumo masivo que opera a nivel nacional tiene 2 plantas de producción donde fabrican un solo producto para transportar a 2 locales con capacidad máxima de producción de 1.000 y 1.500 unidades mensuales, respectivamente. Uno de los locales está en el norte y otro en el sur de Chile. Para llegar a estos locales se tiene un centro de distribución que sólo abastece el norte y otro que sólo abastece el sur. Además de esto se tiene un centro de distribución en la ciudad capital (Santiago) que se abastece de los otros 2 centros de distribución y que despacha tanto al norte como al sur. Una red logística que representa el Problema de Transporte con Transbordo anterior se presenta a continuación:

red-logistica-de-transporte

La demanda de los locales para los próximos 2 meses es:

demanda-problema-transbordo

Adicionalmente sólo los centros de distribución norte y sur tienen capacidad para almacenar unidades de inventario de modo de satisfacer una demanda futura. El costo unitario mensual de almacenar inventario es de $1,5 y $0,8, para el centro de distribución norte y sur, respectivamente.

Formule y resuelva un modelo de Programación Lineal que permita determinar el plan de distribución óptimo para el problema de transbordo que representa la Gestión de una Cadena de Suministro. Defina claramente las variables de decisión, función objetivo y restricciones.

Problema de Transbordo en una Red Logística de Transporte

Variables de Decisión:

variables-de-decision-trans

Parámetros:

parametros-transbordo

Función Objetivo: se busca minimizar durante el período de planificación los costos de la logística de transporte desde las plantas a los centros de distribución, desde los centros de distribución a los locales, desde los centros de distribución a Santiago y desde Santiago a los locales, en conjunto con los costos de inventario en los centros de distribución.

funcion-objetivo-transbordo

Restricciones:

Capacidad de Producción de las Plantas: lo que envía mensualmente cada planta a cada uno de los centros de distribución (norte y sur) no puede superar la capacidad máxima de producción de la respectiva planta.

capacidad-plantas-transbord

Balance en los Centros de Distribución: la cantidad de productos que recibe un centro de distribución desde las plantas en un mes, considerando adicionalmente el inventario inicial y lo que se desee dejar en inventario al final del mes respectivo, deberá ser igual a lo que dicho centro de distribución envíe en aquel mes a los locales y al centro de distribución en Santiago.

balance-distribucion-transb

Demanda de los Locales: los productos que demande mensualmente cada local (1 o 2) deberá ser satisfecho desde los centros de distribución, incluyendo lo que eventualmente se envíe desde Santiago.

demanda-locales-transbordo

Balance en Santiago: los productos que recibe mensualmente Santiago desde los centros de distribución norte y sur deberá ser igual a lo que este centro de distribución envíe a los 2 locales que abastece (Santiago a diferencia de los centros de distribución norte y sur no almacena inventario).

balance-santiago

Rutas Infactibles: no es posible enviar productos de forma directa (en cualquiera de los meses) desde el centro de distribución norte al local 2 y desde el centro de distribución sur al local 1.

rutas-infactibles-transbord

No Negatividad: naturalmente las variables de decisión definidas inicialmente deberán adoptar valores mayores o iguales a cero.

A continuación se muestra un extracto de la implementación computacional del problema de transbordo haciendo uso de Solver de Excel. El valor óptimo es de $24.370.

solucion-optima-transbordo

Por otra parte las celdas en color amarillo corresponden a las variables de decisión (con color naranjo se identifican los parámetros), donde destaca que no se utiliza el centro de distribución sur. En cuanto al centro de distribución norte, éste se abastece de 1.620 unidades durante el mes de Julio (1.000 de la Planta 1 y 620 de la Planta 2), de los cuales envía 1.500 unidades a Santiago y las restantes 120 las almacena en inventario. De las 1.500 que dispone Santiago en el mes de Julio, envía 900 al Local 1 (Norte) y 600 al Local 2 (Sur) satisfaciendo la demanda. En cuanto al mes de Agosto, el centro de distribución norte recibe en total 2.500 unidades las cuales suma a las 120 en inventario que quedaron a fines de Julio, enviando todas ellas a Santiago. Luego de las 2.620 disponibles en Santiago en el mes de Agosto, envía 1.750 al Local 1 y 870 al Local 2, satisfaciendo la demanda de dichos destinos y minimizando el costo total de la logística de transporte.

¿Quieres tener el archivo Excel con la resolución en Solver del Problema de Transbordo en una Red Logística de Transporte Multiperíodo presentado en este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Formulación de un Problema de Aleaciones de Metales resuelto con Solver de Excel

Los modelos de Programación Lineal constituyen una excelente herramienta para representar Problemas de Mezcla de Productos en los cuales se asume que la calidad de la mezcla final en términos de los atributos propios de sus componentes, será proporcional a la participación de los insumos. En este contexto, el siguiente problema representa la situación de una empresa metalúrgica que debe determinar la combinación óptima de distintas aleaciones de metales que le permita configurar una nueva aleación a un costo mínimo. Por cierto se asume que el supuesto básico de la Programación Lineal asociado a la proporcionalidad es admisible.

Problema de Aleaciones de Metales

Una empresa metalúrgica desea fabricar 100 kilos de una nueva aleación que contenga no más de un 45% de Cobre, no menos de un 30% de Acero y un 20% de Estaño a partir de cuatro aleaciones que tienen las siguientes propiedades:

tabla-aleaciones

Formule y resuelva un modelo de Programación Lineal que permita determinar el porcentaje de cada una de las aleaciones debe contener la nueva aleación, de forma que resulte a un mínimo costo.

metales-aleacion

Variables de Decisión: Se propone definir la cantidad de kilogramos que representará cada una de las 4 aleaciones originales en la nueva aleación. Análogamente se puede definir como variables de decisión el porcentaje que representa cada aleación (original) respecto a la nueva aleación.

variables-decision-aleacion

Función Objetivo: Se desea minimizar el costo asociado a la utilización de las distintas utilizaciones.

funcion-objetivo-aleacion

Restricciones: El valor que adopten las variables de decisión previamente definidas deben satisfacer las condiciones que establecen las siguientes restricciones.

Kilogramos a Producir de la Nueva Aleación: Se deben producir 100 kilogramos de la nueva aleación.

fabricar-100-kilos-de-la-al

Máximo Porcentaje de Cobre: La nueva aleación debe contener como máximo un 45% de cobre.

maximo-porcentaje-de-cobre

Mínimo Porcentaje de Acero: La nueva aleación debe contenemos como mínimo un 30% de acero.

minimo-porcentaje-acero

Porcentaje de Estaño: La nueva aleación debe tener exactamente un 20% de estaño.

porcentaje-estaño

No Negatividad: Naturalmente las variables de decisión deben adoptar valores mayores o iguales a cero.

no-negatividad-aleacion

A continuación se muestra un extracto de los resultados computacionales luego de hacer uso de Solver de Excel.

solucion-optima-solver-alea

La solución óptima consiste en X_{1}=25, X_{2}=0, X_{3}=25, X_{4}=50, con valor óptimo V(P)=1.375.000. Dicha solución representa 100 kilogramos de la nueva aleación (que en efecto corresponde a la sumatoria de la cantidad de kilos que representa cada variable) donde la nueva aleación tiene un 45% de cobre, un 35% de acero y un 20% de estaño.

¿Quieres tener el archivo Excel con la resolución en Solver del Problema de Aleaciones de Metales presentado en este artículo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Problema de Inclusión de Costos Fijos en Programación Entera

La estructura de cobro utilizadas en general por las compañías de servicios donde el cliente debe pagar un valor fijo sólo por su utilización (independiente del nivel de consumo y/o eventualmente acotado a un máximo permitido) y un valor variable proporcional al consumo, son una práctica común en el esquema de fijación de precios. Esto suele ser el caso de las compañías de luz, agua, gas, teléfono, entre otras, donde el sólo hecho de tener una red operativa genera costos para la empresa los cuales son traspasados en parte o en su totalidad a los usuarios en un cargo fijo o de mantención más un cargo variable por consumo.

El artículo que presentamos a continuación busca, desde la perspectiva del cliente, minimizar el pago asociado a una cuenta telefónica mensual a través de un modelo de Programación Entera, lo que constituye un problema de inclusión de costos fijos. Cabe destacar que la complejidad del problema es menor y dado los datos se podría resolver por simple inspección, no obstante, nuestro interés es mostrar un marco de análisis pertinente a este tipo de problemas.

Ejemplo Inclusión de Costos Fijos en Programación Entera

Tres empresas telefónicas pidieron que me suscribiera a su servicio de larga distancia dentro del país. MaBell cobra US$16 fijos por mes, más US$0,25 por minuto. PaBell cobra US$25 por mes, pero el costo por minuto se reduce a US$0,21. Y con PhoneBell, la tarifa fija es de US$18 y el costo por minuto de US$0,22. Suelo hacer un promedio de 200 minutos de llamadas de larga distancia al mes. Suponiendo que no pague el cargo fijo si no hago llamadas y que puedo repartir a voluntad mis llamadas entre las tres empresas, ¿Cómo debo repartir las llamadas entre las tres empresas para minimizar la cuenta telefónica mensual?.

Variables de Decisión:

variables-inclusion-costos-

Función Objetivo:

funcion-objetivo-telefonia

Donde F_{i} representa el costo fijo mensual asociado a la compañía i y V_{i} el costo variable por minuto de larga distancia nacional correspondiente a la compañía i. Para mayor claridad se ha marcado con color amarillo y verde los elementos de costos fijos y variables (respectivamente) en la función objetivo.

Restricciones:

restricciones-telefonia

Donde (1) garantiza que se satisfaga el consumo mensual de llamadas, (2) que se realizan llamadas sólo a través de la(s) compañía(s) donde se asume el cargo fijo mensual y (3) impone las condiciones de no negatividad para las variables continuas X_{i}.

A continuación se muestra los resultados de la implementación computacional en Solver para el problema de telefonía que considera la inclusión de costos fijos.

solucion-solver-telefonia

La solución óptima consiste en X_{1}=0X_{2}=0X_{3}=200Y_{1}=0Y_{2}=0Y_{3}=1, es decir, se utiliza exclusivamente la compañía 3 (PhoneBell) y se cursan los 200 minutos mensuales de llamadas de larga distancia a través de dicha compañía. El valor óptimo es de US$62 que representa el costo mínimo de la cuenta telefónica mensual (US$18+200*US$0,22).

¿Quieres tener el archivo Excel con la implementación en Solver del Problema de Inclusión de Costos Fijos en Programación Entera?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Problema de Planificación Forestal resuelto con Graphic Linear Optimizer (GLP)

El software Graphic Linear Optimizer (GLP) es una excelente herramienta que permite resolver gráficamente modelos de Programación Lineal. GLP fue desarrollado bajo la supervisión del profesor Jeffrey Moore (Ph. D) perteneciente a la Universidad de Stanford en Estados Unidos. En el siguiente artículo se muestra la utilización de Graphic LP Optimizer o GLP versión 2.6 en la resolución de un modelo de Programación Lineal en 2 variables que aborda una problemática de planificación forestal.

Una compañía forestal tiene un predio de 100 hectáreas de bosques para explotar. Talar y dejar el suelo para uso agrícola tiene un costo inmediato de M$10 por hectárea y un retorno posterior de M$50 por hectárea. Una alternativa es talar y plantar pino que tiene un costo inmediato de M$50 por hectárea y un retorno posterior de M$120 por hectárea. De aquí que los beneficios netos de ambos planes sean de M$40 y M$70 por hectárea, respectivamente. Desafortunadamente, el segundo plan no puede ser aplicado a todo el terreno ya que sólo se dispone de recursos inmediatos por M$4000. Formule y resuelva gráficamente utilizando el software Graphic Linear Optimizer (GLP) un modelo de Programación Lineal que provea el plan más eficiente de explotación, indicando claramente la solución óptima y valor óptimo.

El modelo de Programación Lineal para la situación anterior es:

modelo-planificacion-forest

Donde x_{1} representa las hectáreas para talar y dejar para uso agrícola y x_{2} las hectáreas para talar y plantar pino. En la siguiente imagen se muestra un extracto de la interfaz del programa GLP donde al pie de la misma se observa la solución óptima del problema con x_{1}=25x_{2}=75. El valor óptimo es 6.250 el cual se encuentra en la fila con la etiqueta PAYOFF.

GLP

El software GLP permite ajustar tanto la escala del gráfico como un zoom personalizado en cualquiera de los ejes de coordenadas. No obstante recomendamos hacer uso de la funcionalidad Auto Zoom que ajusta automáticamente la representación gráfica a una escala adecuada en relación a la magnitud de los datos de origen.

autozoom-glp

A continuación dejamos a nuestros usuarios un enlace de descarga del software Graphic Linear Optimizer o GLP para que puedan probar sus distintas funcionalidades.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Optimización de una Red Logística de Transporte y Localización de Centros de Distribución

Los problemas de optimización que modelan el desempeño de una red logística o cadena de suministro admiten distintas extensiones que permiten representar la particularidad de distintos escenarios. Es así como en el Blog hemos abordado anteriormente el Problema de Transporte que simplemente aborda el transporte de productos desde oferentes a demandantes al mínimo costo y una extensión al mismo como el Problema de Transporte con Transbordo que incorpora intermediarios en dicho proceso con un objetivo similar. En el siguiente artículo se propone un problema de transporte con transbordo que incorpora adicionalmente la decisión de utilizar centros de distribución que operan como intermediarios entre los oferentes (plantas) y los demandantes (mercados).

Una compañía tiene una red logística que consta de dos plantas y dos centros de distribución (CD). Una de las plantas tiene una capacidad de producción de 150.000 unidades semanales y la otra de sólo 95.000 unidades semanales. Por otra parte la capacidad de despacho en cada ruta es de 65.000 unidades semanales (por ejemplo de la primera planta al segundo CD no se pueden enviar más de 65.000 unidades, lo mismo ocurre desde cualquier CD a cualquier mercado).

La compañía debe entregar sus productos semanalmente en tres mercados diferentes con demandas de 50.000, 80.000 y 45.000, respectivamente (no considerar el valor de demanda de 35.000 para el Mercado 2 que se observa en la imagen a continuación). El siguiente diagrama muestra los costos unitarios de transporte entre las distintas ubicaciones (por ejemplo el costo de transportar una unidad de la planta 1 al centro de distribución 2 cuesta $5).

diagrama-red-logistica

Existe un costo fijo semanal por concepto de arriendo asociado a utilizar un centro de distribución correspondiente a $2.000 y $3.000, para el centro de distribución 1 y 2, respectivamente. El pago de dicho costo fijo habilita al centro de distribución para recibir productos de las plantas y despachar productos a los mercados (en caso de no asumir el costo fijo de un centro de distribución, éste no se podrá utilizar).

Formule y resuelva un modelo de optimización que permita escoger la política de producción y transporte de los productos, además del arriendo de centros de distribución que minimice los costos totales.

Variables de Decisión:

variables-red-logistica

Parámetros:

parametros-red-logistica

Función Objetivo: Se desea minimizar los costos totales asociados a la logística de transporte desde las plantas a los centros de distribución, como de éstos hacia los mercados. Adicionalmente los costos de arriendo de los centros de distribución que se decidan utilizar.

funcion-red-logistica

Restricciones:

Capacidad de Producción de las Plantas (Semanal): la cantidad de unidades que puede enviar cada planta a los distintos centros de distribución no puede superar la capacidad de producción de la respectiva planta.

capacidad-de-las-plantas-lo

Disponibilidad de los Centros de Distribución: un centro de distribución puede recibir unidades desde las plantas en la medida que se decida su utilización (arriendo). En dicho caso se podrá recibir como máximo 130.000 unidades (2*M), en caso contrario no recibe nada.

disponibilidad-de-los-centr

Demanda de los Mercados: cada mercado debe recibir las unidades que demanda semanalmente desde los centros de distribución.

demanda-mercados-red-logist

Máximo a Despachar en cada Ruta: en cada ruta (combinación de transporte de una planta a un centro de distribución o de un centro de distribución a un mercado) no se podrá enviar más de 65.000 unidades (representado por el parámetro M).

capacidad-ruta

Balance en los Centros de Distribución: la cantidad de unidades que recibe un centro de distribución desde las plantas debe ser igual a las unidades que éste envíe a los mercados.

balance-centros-de-distribu

No Negatividad: se debe respetar las no negatividad para las variables de decisión continuas que representan la logística de transporte (eventualmente se podría exigir adicionalmente que adopten valores enteros)

no-negatividad-logistica

La implementación del problema anterior haciendo uso de OpenSolver, permite alcanzar los resultados que se observan a continuación:

opensolver-red-logistica

En la solución óptima de este problema de red logística de transporte y localización de centros de distribución se deben arrendar los 2 centros de distribución. La planta 1 produce 110.000 unidades semanales de las cuales envía 65.000 al centro de distribución 1 y 45.000 unidades al centro de distribución 2. Por otra parte la planta 2 produce sólo 65.000 unidades las cuales envía en su totalidad al centro de distribución 2. El centro de distribución 1 envía 50.000 unidades al mercado 1 y 15.000 unidades al mercado 2 (en el caso del centro de distribución 2, éste envía 65.000 y 45.000 unidades al mercado 2 y 3, respectivamente). Se puede apreciar que se satisfacen las condiciones anteriormente expuestas y se minimiza el costo total semanal que corresponde a $790.000 (valor óptimo).

¿Quieres tener el archivo Excel con la implementación computacional en Solver de este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]